PII: S0040-4039(97)00378-X

Enantioselective Deprotonation of 4-tert-Butylcyclohexanone by Fluorine-Containing Chiral Lithium Amides Derived from α -Phenethylamine

Kazumasa Aoki and Kenji Koga*

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract: An α -phenethylamine-derived chiral lithium amide ((R)-5c) possessing a 2,2,2-trifluoroethyl group on the amide nitrogen was found to induce high enantioselectivity in the kinetic deprotonation of 4-tert-butylcyclohexanone (1) in the presence of excess trimethylsilyl chloride to give the corresponding silyl enol ether ((S)-2) in up to 92% ee (86% chemical yield). © 1997 Elsevier Science Ltd.

Enantioselective deprotonation of σ -symmetric cyclohexanone derivatives such as 4-tert-butylcyclohexanone (1) can be carried out by using various chiral lithium amides. We have previously reported enantioselective deprotonation of 1 in the presence of excess trimethylsilyl chloride² (TMSCl) by a chiral chelated lithium amide ((R)-3) possessing a piperidino group as an internal ligation site for the lithium and a 2,2,2-trifluoroethyl group on the amide nitrogen to give the corresponding silyl enol ether ((R)-2) in reasonably good chemical and optical yields. It is shown that the 2,2,2-trifluoroethyl group plays a crucial role in inducing high enantioselectivity. In search of easily accessible chiral lithium amides that induce good enantioselectivity in the present kinetic deprotonation reaction, we designed α -phenethylamine-derived chiral lithium amides having a fluorine-containing alkyl group ((R)-5a-c)⁴, and compared their ability as chiral bases with those having an alkyl group ((R)-5a-e) or a 2-(dimethylamino)ethyl group ((R)-5f) on the amide nitrogen. All reactions were carried out in THF in the presence of excess TMSCl. Results are summarized in Table 1.

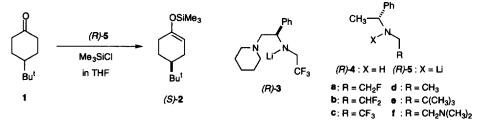


Table 1. Enantioselective Deprotonation of 1 Using 5

Run	Chiral lithium amide		Temp.	Product		
	5	R	(°C)	2	Chem. y. (%)	Optical y. (%)
1	(R)-5a	CH₂F	-78	(S)- 2	61	43
2	(R)- 5b	CHF ₂	-78	(S)-2	66	59
3	(R)- 5 c	CF ₃	-78	(S)-2	98	89
4	(R)- 5 c	CF ₃	-100	(S)-2	86	92
5	(S)- 5 c	CF ₃	100	(R)-2	83	92
6	(R)-5d	CH ₃	-78	(S)-2	55	41
7	(R)- 5e	C(CH ₃) ₃	-78	(S)-2	94	32
8	(R)- 5f	CH ₂ N(CH ₃) ₂	-78	(S)-2	92	18

It is shown that chemical and optical yields of the product $(2^{5,6})$ depend heavily on the substituent on the amide nitrogen. Thus, among the amides ((R)-5a-c) having a fluorine-containing alkyl group, enantioselectivity of the reaction increases as the number of the fluorine atoms increases (runs 1,2,3). It is shown that the amides ((R)-5d-e) having an alkyl group on the amide nitrogen gave (S)-2 in low optical yields (runs 6,7). It is again shown that the 2,2,2-trifluoroethyl group is necessary to get the product in high efficiency.

Based on the assumption that one of the fluorine atoms and the lithium in (R)-5c may be forced to come into close proximity due to the electrostatic interaction, as was observed in (R)-3, (R)-5f was designed with the expectation that the dimethylamino group will orient itself in close proximity to the lithium by coordination. It is shown, however, that (R)-5f gave (S)-2 in quite low enantioselectivity (run 8).

A typical experimental procedure (Table 1, run 4) is as follows. Under argon atmosphere, a solution of butyllithium in hexane (1.55 N, 1.55 mL, 2.4 mmol) was added to a solution of (R)-4c (508 mg, 2.5 mmol) in THF (50 mL) at -78 °C. The resulting solution was stirred at -78 °C for 30 min and was then cooled to -100 °C. After addition of TMSCl (1.27 mL, 10 mmol), a solution of 1 (308 mg, 2.0 mmol) in THF (4 mL) was added dropwise over a period of 6 min, and the whole was stirred at -100 °C for 50 min. The reaction mixture was quenched with triethylamine (4 mL) and satd. aq. NaHCO₃ (10 mL), and the whole was allowed to warm to room temperature. After addition of water (15 mL), the mixture was extracted with hexane (3 x 50 mL). The organic extracts were combined, washed successively with water (2 x 20 mL), 0.1 N aq. citric acid (2 x 100 mL, 3 x 50 mL), water (20 mL), satd. aq. NaHCO₃ (20 mL), brine, and then dried (Na₂SO₄). Evaporation of the solvent *in vacuo* gave a yellow oil, which was purified by column chromatography (silica gel, hexane) followed by bulb-to-bulb distillation to give (S)-2 as a colorless oil (388 mg, 86% yield) of bp 150 °C (0.5 mmHg) (bath temperature), [α]₃₆₅²⁵ -217.1 (c, 1.49, benzene), corresponding to be 92% ee.⁵ (R)-4c was recovered (67% isolated yield) without any loss of optical purity.

Since (R)- and (S)- 5c are easily accessible in optically pure forms from commercially available (R)- and (S)- α -phenethylamine, these chiral lithium amides are practically useful bases for the present enantioselective deprotonation reaction.

Acknowledgement A predoctoral fellowship to K. A. from the Japan Society for the Promotion of Science is gratefully acknowledged.

REFERENCES AND NOTES

- For reviews, see: (a) Cox, P. J.; Simpkins, N. S. Tetrahedron: Asymmetry 1991, 2, 1-26; (b) Koga, K. Pure Appl. Chem. 1994, 66, 1487-1492; (c) Koga, K.; Shindo, M. J. Synth. Org. Chem., Jpn. 1995, 52, 1021-1032; (d) Simpkins, N. S. Pure Appl. Chem. 1996, 68, 691-694.
- 2. Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 25, 495-498.
- 3. Aoki, K.; Noguchi, H.; Tomioka, K.; Koga, K. Tetrahedron Lett. 1993, 34, 5105-5108.
- 4. The chiral amines ((R)-4a, 4b, and 4c) were prepared in optically pure forms from commercially available (R)- α -phenethylamine by converting it to the corresponding amides using RCOOC₂H₅ (R = CH₂F, CHF₂, and CF₃, respectively), followed by reduction with BH₃-THF.
- 5. It is shown that the maximum rotation of (S)-2 is $[\alpha]_{365}^{25}$ -237 (benzene).⁶ Optical yields of the product were calculated by using this value.
- 6. Aoki, K.; Nakajima, M.; Tomioka, K.; Koga, K. Chem. Pharm. Bull. 1993, 41, 994-996.